

Implementation of a Very Low Cost Portable SpaceWire Monitor and Debugger

International SpaceWire Conference 2008

Paul Jaffe Naval Center for Space Technology Washington, DC, USA paul.jaffe@nrl.navy.mil +001 202-767-6616

Keith Leisses Dynamic Engineering 150 DuBois St. #C Santa Cruz, CA 95060, USA sales@dyneng.com +001 (831) 457 8891

- An objection raised to the use of SpaceWire is that it is not as widespread as other interfaces proposed for space. MIL-STD 1553, RS-422, IEEE-1394 variants, Ethernet, I2C, and USB have been posed as alternatives.
- Many factors go into interface selection, including data transfer capacity, prior spaceflight heritage, power consumption, and development complexity. Often price and availability of test equipment are cited as a salient variables to be weighed.
- Historically, the costs of interface test equipment are generally dwarfed by other space program cost elements, such as flight hardware procurement and staffing.
- This is changing as the prevalence of high school and university student satellite projects joins ranks with small aerospace companies who may be developing only one component or a small experiment. These entities may be severely cost-constrained and may depend on uncompensated student labor and donated launch opportunities.

International SpaceWire Conference

paul.jaffe@nrl.navy.mil

Rough Test Interface Costs

Approximate cost ranges of ground test equipment for various interfaces - prices \$USD							
Interface	Hardware needed	Software needed	2008 ~cost range	Suppliers			
MIL-STD-1553	Interface card	Incl. with hardware	\$500-\$2,000	SBS, Paravant, others			
RS-422	USB or RS232 to 422 conv	Free d/I: Terminal software	\$100-\$300	Black Box, B&B, others			
12C	USB-I2C converter	Incl. with hardware	\$250-\$750	MCC, Total Phase, others			
USB	(included with PC)	Free d/I: USBET, USBTester	\$0	usb.org, Jungo, others			
IEEE-1394	(included with many PCs)	Free d/l: libdc1394, VHPD1394	\$0-\$1500	sourceforge.net, Thesycon			
Ethernet	(Included with PC)	Free d/l: tcpdump, Wireshark	\$0	tcpdump.org, wireshark.org			
SpaceWire	Interface card or converter	Incl. with hardware	\$3,500-\$12,000+	Star-Dundee, 4Links, others			
	DESWBO and LA	Incl. with USB logic analyzer	\$900+LA*	Dynamic Engineering			

*appropriate USB logic analyzers (LA) range from \$149 to \$1500+

- Cost of time to become familiar with hardware and software tools, which is considerable in some case, is not included.

- The level of capability provided by the options in the table is highly variable

The idea: combine an inexpensive USB logic analyzer with an inexpensive SpaceWire breakout box for SpaceWire monitoring and debugging.

- Logic analyzers have gone from being cumbersome, complex, expensive pieces of equipment that cost tens of thousands of dollars to small, easy-to-use devices available at near commodity pricing. This has been enabled in large part by two advances:
 - the ubiquity of the personal computer
 - the comparatively recent rise of the USB interface
- By 2008, several billion USB interface devices had entered the market, and USB had become the dominant interface in the personal computer realm.
- Over a dozen different types of USB logic analyzers were available for less than \$1,000 US, offering amenities such as integrated oscilloscopes, pattern generators, as many as 34 channels per device, and up to oscillator frequencies of 1 GHz.

DigiView DV1-100

- 18 Channels @ 100 MHz (10ns)
- USB interface and power source for portability
- Real time Hardware Compression.
- Eliminates Resolution vs. Depth tradeoffs.
- Compression Ratio up to 256,000:1
 depending on activity.
- Trigger on rising, falling or transition of any channel.
- Multi-channel High, low and don't care trigger qualifier.
- Pre-trigger and post-trigger data capture.

Information and image downloaded from http://www.tech-tools.com/dv_dv1.htm

Dynamic Engineering DESWBO

- The DESWBO monitors a single SpaceWire link and is packaged as a printed circuit board mounted on a compact enclosure with many mounting rail options.
- The board has two 9-pin MDM connectors
- Signals indicate what types of characters are passing between nodes, as well as the contents of data and timecode characters.

- A running count of flow control credits for each node is calculated by the DESWBO by monitoring FCTs and N-character occurrences.
- The low voltage differential signalling (LVDS) signals from each node are buffered and monitored by a field programmable gate array (FPGA).
- The DESWBO has been tested comprehensively with a hardware that has the ability to insert errors under software control.
- The end-of-packet, got-data and got-FCT signals from each node are connected to pulse capture and duration extension circuits to drive three green LEDs.
- The error-end-of-packet, parity error, escape error, credit error and disconnect error signals for each node drive five red LEDs. International SpaceWire Conference paul.jaffe@nrl.navy.mi

- There are 24 test points for each node that are driven by the real-time signals from the SpaceWire character receivers
 - eight data bits
 - six credit count bits
 - Parallel data strobe
 - NULL received
 - FCT received
 - Timecode received
 - End-of-Packet
 - Error End-of-Packet
 - Credit error
 - Disconnect error
 - Escape error
 - Parity error
- DIN and SIN signals test points for each node from the LVDS receivers
- One test point for each node that is driven by the recovered clock
- Three ground test points per node to facilitate probe grounding.
- Powered by an included external 5-volt supply
- Cost: \$900 US

Monitoring the Link

onfig Search Window Help	e	•								B	<u>s</u> a -	IDLE	E	
->Y: 7 us,310.0 ns											•		F	ſ
ame	10 us/Div				🛛	▼-6.91 us	.		I				Y î	
Bus												5		
Node 0 - NULL received		1111111111	11111111111111	111111			Ш	111111111111111					00	ſ
Node 0 - FCT received												_§	00	
Node 0 - End-of-Packet												_§	00	
Node 0 - Disconnect error												_\$		
Node 0 - Error End-of-Pkt												_\$		
Node 0 - Credit error												_\$		
Node 0 - Escape error												_§		
Node 1 - Null received														
Node 1 - FCT received												_§		
Node 1 - End-of-Packet			2									_§		
Node 1 - Error End-of-Pkt												_§		
Node 1 - Credit error												_§		
Node 1 - Escape error												_§		
Node 1 - Disconnect error												_§		
DIN_0												5		
SIN_0												S		
DIN_1													01	
SIN_1													01	

Inspecting Data & Strobe Signals

	500 ns/Div -23 us
Name	
+ Bus	
Node 0 - NULL received	
Node 0 - FCT received	
Node 0 - End-of-Packet	
Node 0 - Disconnect error	Status: 1
Node 0 - Error End-of-Pkt	X->Y: 110.0 ns
Node 0 - Credit error	X: -24.11 us Y: -24 us
Node 0 - Escape error	Samples: 1.889 Billion
Node 1 - Null received	Total: 18.89015038 Sec. 1/24/2008 12:00:07 pm
Node 1 - FCT received	
Node 1 - End-of-Packet	
Node 1 - Error End-of-Pkt	
Node 1 - Credit error	
Node 1 - Escape error	
Node 1 - Disconnect error	
DIN_0	
SIN_O	
DIN_1	
SIN_1	

Use of the System

• This test resource has been used successfully to support TacSat-4, PnPSat, Herschel II, and other satellite projects.

Combining an inexpensive USB logic analyzer with an inexpensive SpaceWire breakout box provides a portable, capable, resource for SpaceWire monitoring and debugging.